Fitting of interatomic potentials without forces: A parallel particle swarm optimization algorithm
نویسندگان
چکیده
We present a methodology for fitting interatomic potentials to ab initio data, using the particle swarm optimization (PSO) algorithm, needing only a set of positions and energies as input. The prediction error of energies associated with the fitted parameters can be close to 1 meV/atom or lower, for reference energies having a standard deviation of about 0.5 eV/atom.We tested ourmethod by fitting a Sutton–Chen potential for copper from ab initio data, which is able to recover structural and dynamical properties, and obtain a better agreement of the predicted melting point versus the experimental value, as compared to the prediction of the standard Sutton–Chen parameters. © 2014 Elsevier B.V. All rights reserved.
منابع مشابه
A parallel hybrid optimization algorithm for fitting interatomic potentials
In this work we present the parallel implementation of a hybrid global optimization algorithm assembled specifically to tackle a class of time consuming interatomic potential fitting problems. The resulting objective function is characterized by large and varying execution times, discontinuity and lack of derivative information. The presented global optimization algorithm corresponds to an irre...
متن کاملParallel Implementation of Particle Swarm Optimization Variants Using Graphics Processing Unit Platform
There are different variants of Particle Swarm Optimization (PSO) algorithm such as Adaptive Particle Swarm Optimization (APSO) and Particle Swarm Optimization with an Aging Leader and Challengers (ALC-PSO). These algorithms improve the performance of PSO in terms of finding the best solution and accelerating the convergence speed. However, these algorithms are computationally intensive. The go...
متن کاملA Modified Discreet Particle Swarm Optimization for a Multi-level Emergency Supplies Distribution Network
Currently, the research of emergency supplies distribution and decision models mostly focus on deterministic models and exact algorithm. A few of studies have been done on the multi-level distribution network and matheuristic algorithm. In this paper, random processes theory is adopted to establish emergency supplies distribution and decision model for multi-level network. By analyzing the char...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملTask Scheduling Using Particle Swarm Optimization Algorithm with a Selection Guide and a Measure of Uniformity for Computational Grids
In this paper, we proposed an algorithm for solving the problem of task scheduling using particle swarm optimization algorithm, with changes in the Selection and removing the guide and also using the technique to get away from the bad, to move away from local extreme and diversity. Scheduling algorithms play an important role in grid computing, parallel tasks Scheduling and sending them to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Physics Communications
دوره 185 شماره
صفحات -
تاریخ انتشار 2014